SHORT PAPER

An efficient method for the oxidation of aryl substituted semicarbazides to aryl azo compounds with $NaNO_2$ - Ac_2O^{\dagger}

Xiao-Chuan Li^a*, Yu-Lu Wang^a and Jin-Ye Wang^b

^aCollege of Chemical and Environmental Science, Henan Normal University, Xinxiang, Henan, 453002, P.R. China

^aThe Key Laboratory of Environmental Science and Technology of High Education of Henan Province, P.R. China

^bShanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032, P.R. China

In this paper 18 aryl substituted semicarbazides undergo rapid oxidation to the corresponding aryl azo compounds using NaNO₂-acetic anhydride as a novel oxidizing agent under mild conditions for the first time.

Keywords: oxidation, aryl azo compounds, NaNO2-acetic anhydride, mild condition

Azo compounds have caused great interest in organic synthesis. They are widely used as dyes and analytical reagents.¹ Optical-switching and image storage can be made by azobenzene liquid crystal films.^{2,3} Recently, many noteworthy studies have shown that some azo compounds possess excellent optical memory and photoelectric properties.^{4,5}

The oxidation of aryl substituted semicarbazides to aryl azo compounds is an important transformation in organic synthesis. We have been paying particular and continuous attention to this field. In our laboratory, FeCl₃·6H₂O,⁶ 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy,⁷ DMF-NO_x,⁸ KClO₃/H₂SO₄/FeSO₄,⁹ NBS/pyridine¹⁰ and galvinoxyl¹¹ have been used as effective oxidants with good results. But most of the methods are deficient in some aspects. For example, tedious operation,^{7,10,11} expensive catalysts,^{7,11} the use of a large amount of solvent,^{7,10,11} strong acidic or basic media,^{6,9} and an accurate control of the molar ratio of oxidants⁸. These limit their application in organic synthesis. Fe(NO₃)₃·9H₂O¹² was also used as efficient reagent for the oxidation of aryl substituted semicarbazides, which are fast and simple.

To continue our research project on the synthesis of azo compounds, we decided to develop a new reagent or reagent system to overcome the above limitations. NaNO₂–Ac₂O is known oxidation system for the rapid and selective oxidation of a variety of alcohols to their corresponding carbonyl compounds.¹³ We rationalised that this method might be suitable for the oxidation of aryl substituted semicarbazide to azo compounds. After our experiments, it was demonstrated that this is an effective reagents. All reactions were performed smoothly at room temperature (Scheme 1) and completed within 30min with excellent yields. The results are summarised in Table 1.

In the oxidation study, we selected **1a** as a model, a relatively unreactive substrate. The optimum molar ratio was searched by using **1a** (1mmol) with different molar ratio of NaNO₂:Ac₂O. The results are summarised in Table 2. If NaNO₂ was used for the oxidation of **1a** alone, the reaction could occur after stirring 24h. The optimum molar ratio NaNO₂:Ac₂O (3:3) is required for complete oxidation of **1a**.

Overall, we recommend this simple, clean and economical procedure for the oxidation of aryl substituted semicarbazide with excellent yields under mild conditions. In all cases, clean

[†] This is a Short Paper, there is therefore no corresponding material in

Aı	NHCONHNHC ₆ H	$\frac{\text{NaNO}_2}{\text{r.t.}}$	$ \xrightarrow{-Ac_2O} Arl \\ \xrightarrow{30min} $	NHCON=NC ₆ H ₅
	1a–1r			2a–2r
Ar:	a: C ₆ H ₅	b: 2-Me	eC ₆ H ₄	c: $3 - MeC_6H_4$
	d : $4 - MeC_6H_4$	e: 4-Et	OC_6H_4	f: $2,3-Me_2C_6H_3$
	g: $2,5-Me_2C_6H_3$	h: 2,6-1	$Me_2C_6H_3$	i: $3,4-Me_2C_6H_3$
	j : α -C ₁₀ H ₇	k: 4-FC	C_6H_4	l: $2-ClC_6H_4$
	m: 3-ClC ₆ H ₄	n: 4-Cl	C_6H_4	o: 2-BrC ₆ H ₄
	p: 3-BrC ₆ H ₄	q: 4-Br	C_6H_4	r: 4-IC ₆ H ₄

Scheme 1

Table 1 The oxidation of aryl substituted semicarbazides using the oxidation system of $NaNO_2$ -Ac₂O

Product	Ar	Yield/%	M.p./°C	Lit. mp./°C
2a	C _e H ₅	97	109–111	110–112 ¹¹
2b	2-MeC _e H₄	92	103–104	103–105 ¹¹
2c	3-MeC _e H₄	97	70–72	69–71 ¹¹
2d	4-MeC _e H₄	96	103–105	104–106 ¹¹
2e	4-EtOČ _e H ₄	93	125–126	127–129 ¹¹
2f	2,3-Me ₂ C _e H ₂	98	122–124	122–124 ¹¹
2g	2,5-Me ₂ C ₆ H ₃	93	120–122	121–123 ¹¹
2ĥ	2,6-Me ₂ C ₆ H ₃	97	118–120	118–120 ¹¹
2i	3,4-Me ₂ C ₆ H ₃	92	126–128	126–128 ¹¹
2i	α -C ₁₀ H ₇	94	134–136	132–134 ¹¹
2k	4-FC ₆ H ₄	95	106–108	105–107 ⁹
21	2-CIČ _e H _₄	96	82–84	80–82 ⁹
2m	3-CIC _e H ₄	98	84–86	86–87 ⁹
2n	4-CIC ₆ H₄	96	139–141	139–140 ⁹
2o	2-BrC ₆ H₄	95	70–72	69–71 ⁹
2p	3-BrC ₆ H₄	98	94–96	93–95 ⁹
2q	4-BrC _e H₄	96	138–140	137–138 ⁹
2r	4-IC ₆ H̃₄ [‡]	98	133–135	132–134 ⁹

 Table 2
 Oxidation of 1a (1mmol) with different molar ratio of NaNO₂:Ac₂O

Entry	1a:NaNO2:Ac2O	Reaction time	Yield/%
1	1:1:1	30min	40
2	1:1.5:1.5	30min	50
3	1:2:2	30min	65
4	1:2.5:2.5	30min	80
5	1:3:3	30min	97
6	1:4:4	30min	95
7	1:3:3	3h	95
8	1:3:0	24h	little

^{*} To receive any correspondence. E-mail: xiaochuanli@263.net

transformation could be detected by TLC. We believe that the present methodology is an important addition to existing methodology.

Experimental

Melting points were determined on Kolfler micro melting point apparatus and measured in °C without correction. Element analyses were performed on a Perkin-Elmer 240C analytical instrument. Infrared spectra were recorded on a SP3-300 spectra photometer using KBr pellets. ¹HNMR spectra were measured in CDCl₃ using TMS as internal standard with a JEOL-90Q NMR spectrometer. Mass spectra were recorded on a KRATOS-AEI- MS50 (U.K.).

A mixture of aryl substituted semicarbazide (1mmol), acetic anhydride (0.306g, 3mmol) and NaNO₂ (0.207g, 3mmol) in acetone (15 ml) was vigorously stirred at room temperature. After completion of the reaction (TLC), the reaction mixture was filtered. Then cool water (30ml) was poured into the filtrate slowly. After 30min, the resulting precipitate were filtered, washed with water and dried under vacuum. No further purification was needed.

Under these experimental conditions no unusual safety problems were encountered on mixing of $NaNO_2$ and acetic anhydride in acetone solution or during the subsequent use of the mixture.

Data of products

Compound **2a:** Red tabular crystals; IR (KBr) v_{max} : 3232, 3060, 1680, 1600, 1500, 1420 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.03–7.80 (m, 10H,Ar-H), 8.90 (s, 1H, NH); MS (*m*/*z*): 225 (M⁺), 120(100), 105, 92, 91, 77; Anal. Calcd. for C₁₃H₁₁N₃O: C, 69.31; H, 4.93; N, 18.66. Found: C, 69.13; H, 4.80; N, 19.13.

Compound **2b:** Orange tabular crystals; IR (KBr) v_{max} : 3240, 3060, 2995, 1682, 1580, 1480, 1402 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 2.27 (s, 3H, CH₃), 7.06–7.98 (m, 9H,Ar-H), 8.90 (s, 1H, NH); Anal. Calcd. for C₁₄H₁₃N₃O: C, 70.29; H, 5.44; N, 17.57. Found: C, 70.18; H, 5.42; N, 17.91.

Compound **2c:** Orange tabular crystals; IR (KBr) v_{max} : 3260, 3030, 2970, 2850, 1685, 1598, 1470, 1425 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 2.26 (s, 3H, CH₃), 6.80–8.02 (m, 9H,Ar-H), 8.25 (s, 1H, NH); Anal. Calcd. for C₁₄H₁₃N₃O: C, 70.29; H, 5.44; N, 17.57. Found: C, 70.11; H, 5.62; N, 17.81.

Compound **2d:** Orange tabular crystals; IR (KBr) v_{max} : 3320, 3050, 2990, 2850, 1685, 1600, 1580, 1442 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 2.27 (s, 3H, CH₃), 7.10–8.05 (m, 9H,Ar-H), 8.26 (s, 1H, NH); Anal. Calcd. for C₁₄H₁₃N₃O: C, 70.29; H, 5.44; N, 17.57. Found: C, 70.15; H, 5.31; N, 17.84.

Compound **2e:** Orange needles; IR (KBr) ν_{max} : 3320, 3050, 2995, 2880, 1675, 1580, 1490, 1433 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 1.27 (t, 3H, CH₃), 3.90 (q, 2H, CH₂), 6.81–8.00 (m, 9H,Ar-H), 8.25 (s, 1H, NH); Anal. Calcd. for C₁₅H₁₁N₃O: C, 66.91; H, 5.58; N, 15.61. Found: C, 67.01; H, 5.30; N, 15.42.

Compound **2f:** Brown tabular crystals; IR (KBr) ν_{max} : 3220, 3020, 2965, 2900, 1695, 1580, 1495, 1430 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 2.20 (s, 6H, 2CH₃), 7.02–8.02 (m, 8H,Ar-H), 8.21 (s, 1H, NH); Anal. Calcd. for C₁₅H₁₅N₃O: C, 71.15; H, 5.93; N, 16.60. Found: C, 70.94; H, 5.65; N, 16.79.

Compound **2g:** Yellow tabular crystals; IR (KBr) ν_{max} : 3225, 3040, 2960, 2850, 1680, 1580, 1490, 1450 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 2.25 (s, 6H, 2CH₃), 7.80–8.02 (m, 8H,Ar-H), 8.20 (s, 1H, NH); Anal. Calcd. for C₁₅H₁₅N₃O: C, 71.15; H, 5.93; N, 16.60. Found: C, 71.10; H, 5.75; N, 16.80.

Compound **2h:** Orange tabular crystals; IR (KBr) v_{max} : 3300, 3010, 2950, 2840, 1685, 1580, 1485, 1435 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 2.24 (s, 6H, 2CH₃), 7.42–8.02 (m, 8H,Ar-H), 8.77 (s, 1H, NH); Anal. Calcd. for C₁₅H₁₅N₃O: C, 71.15; H, 5.93; N, 16.60. Found: C, 71.05; H, 5.73; N, 16.50.

Compound **2i:** Orange tabular crystals; IR (KBr) v_{max} : 3250, 3060, 2965, 2900, 1690, 1590, 1445, 920 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 2.20 (s, 6H, 2CH₃), 7.05–8.02 (m, 8H,Ar-H), 8.22 (s, 1H, NH); Anal. Calcd. for C₁₅H₁₅N₃O: C, 71.15; H, 5.93; N, 16.60. Found: C, 71.08; H, 5.28; N, 16.81.

Compound **2j:** Orange needles; IR (KBr) v_{max} : 3260, 3040, 1685, 1590, 1478, 1440, 923 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.04–8.24 (m, 12H,Ar-H), 8.83 (s, 1H, NH); Anal. Calcd. for C₁₇H₁₃N₃O: C, 74.18; H, 4.73; N, 15.27. Found: C, 74.36; H, 4.23; N, 15.46.

Compound **2k:** Yellow needles; IR (KBr) v_{max} : 3340, 3020, 1710, 1600, 1500, 1420 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.09–8.03 (m, 9H,Ar-H), 8.45 (s, 1H, NH); MS (*m*/*z*): 243 (M⁺), 138(100), 110, 105, 90, 77; Anal. Calcd. for C₁₃H₁₀N₃OF: C, 64.19; H, 4.14; N, 17.28. Found: C, 64.28; H, 4.18; N, 17.20.

Compound **21:** Orange tabular crystals; IR (KBr) v_{max} : 3340, 3020, 1710, 1600, 1500, 1420 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.09–8.03 (m, 9H,Ar-H), 8.45 (s, 1H, NH); Anal. Calcd. for C₁₃H₁₀N₃OCl: C, 60.13; H, 3.88; N, 16.18. Found: C, 60.21; H, 3.90; N, 16.15.

Compound **2m:** Red tabular crystals; IR (KBr) ν_{max} : 3260, 3030, 1680, 1600, 1480, 1430 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.10–8.60 (m, 9H,Ar-H), 9.06 (s, 1H, NH); Anal. Calcd. for C₁₃H₁₀N₃OCl: C, 60.13; H, 3.88; N, 16.18. Found: C, 60.34; H, 3.92; N, 16.10.

Compound **2n:** Red tabular crystals; IR (KBr) v_{max} : 3320, 3050, 1680, 1600, 1585, 1440 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.20–8.05 (m, 9H,Ar-H), 8.60 (s, 1H, NH); MS (*m*/*z*): 259(M⁺), 154, 126(100), 105, 90, 77; Anal. Calcd. for C₁₃H₁₀N₃OCl: C, 60.13; H, 3.88; N, 16.18. Found: C, 60.59; H, 3.90; N, 15.95.

Compound **20:** Red tabular crystals; IR (KBr) ν_{max} : 3280, 3040, 1680, 1580, 1500, 1435 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.10–8.60 (m, 9H,Ar-H), 9.04 (s, 1H, NH); Anal. Calcd. for C₁₃H₁₀N₃OBr: C, 51.49; H, 3.33; N, 13.86. Found: C, 51.79; H, 3.36; N, 13.94.

Compound **2p:** Orange needles; IR (KBr) ν_{max} : 3320, 3030, 1700, 1580, 1500, 1430 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.08–8.57 (m, 9H,Ar-H), 9.05 (s, 1H, NH); Anal. Calcd. for $C_{13}H_{10}N_3OBr$: C, 51.49; H, 3.33; N, 13.86. Found: C, 51.60; H, 3.41; N, 13.71.

Compound **2q:** Red tabular crystals; IR (KBr) ν_{max} : 3325, 3040, 1680, 1580, 1490, 1450 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.08–8.57 (m, 9H,Ar-H), 9.05 (s, 1H, NH); MS (*m*/*z*): 305 (M+2), 303 (M⁺), 200, 198, 172, 170(100), 105, 90, 77; Anal. Calcd. for C₁₃H₁₀N₃OBr: C, 51.49; H, 3.33; N, 13.86. Found: C, 51.63; H, 3.44; N, 13.87.

Compound **2r**: Orange tabular crystals; IR (KBr) v_{max} : 3300, 3020, 1680, 1580, 1485, 1440 (cm⁻¹); ¹HNMR (CDCl₃) δ (ppm): 7.26–8.00 (m, 9H,Ar-H), 8.57 (s, 1H, NH); MS (*m*/*z*): 351 (M⁺), 246(100), 218, 105, 90, 77; Anal. Calcd. for C₁₃H₁₀N₃OBr: C, 51.49; H, 3.33; N, 13.86. Found: C, 51.63; H, 3.44; N, 13.87.

Received 1 November 2001; accepted 10 February 2002 Paper 01/1112

References

- 1 H.W. Russ and H. Tappe, Eur. Pat. Appl. EP., 1994, 629, 627.
- 2 T. lkeda. and O. Tsutumi, Science, 1995, 268, 1873.
- 3 D. Campbell, L.R. Dix, and P. Rostron, Dyes Pigm., 1995, 29, 77.
- 4 M. Sefkow and H. Kattz, *Tetrahedron Lett.*, 1999, 40, 6561.
- 5 Z.F. Liu, O.K. Hashimoto and A. Fujishima, Nature, 1990, 347, 658.
- 6 C.-L. Wang, Y.-L. Wang, X.-Y. Wang, J.-P. Li and H. Wang, J. Chin. Chem. Soc., 1999, 46, 131.
- 7 X.-Y. Wang, Y.-L. Wang, J.-P. Li and Z.-Y. Zhang, Synth. Commun., 1999, 29, 157.
- 8 C.-L. Wang, Y.-L. Wang, X.-Y. Wang, J.-P. Li, H. Wang and S.-S. Zhang, Org. Prep. Proced. Int., 1998, **30**, 97.
- 9 C.-L. Wang, Y.-L. Wang, X.-Y. Wang, J.-P. Li, D.-L. Ma and H. Wang, Synth. Commun., 1997, 27, 3723.
- 10 Y.-L. Wang, X.-Y. Wang, J.-P. Li, D.-L. Ma and H. Wang, Synth. Commun., 1997, 27, 1737.
- 11 Y.-L. Wang, J.-L. Wang, J.-P. Li and D.-L. Ma, Synth. Commun., 1996, 26, 3579.
- 12 (a) C.-L. Wang, X.-X. Wang, Y.-L. Wang, X.-Y. Wang and H. Wang, J. Chem. Educ., 2000, 77, 903; (b). C.-L. Wang, Y.-L. Wang, X.-X Wang, X.-Y. Wang, H. Wang and J.-P. Li, Synth. Commun., 1999, 29, 2597.
- 13 Babasaheb P. Bandagr, Vaibhav S. Sadavarte and Lavkumar S. Uppalla. J. Chem. Soc., Perkin Trans.1, 2000, 21, 3559.